HIMSS is on FHIR

Bed babes tout their wares
Bed, not booth babes

This year’s Healthcare Information and Management Systems Society conference in Chicago is a veritable candy store of high-tech healthcare. Yes the smart hospital beds and baby monitoring bracelets are fascinating. But perhaps the highest impact, most impressive technology on offer is what you can’t see—the software. Though it has about as much shazam as a bed pan, the coming health communication infrastructure known as HL7 FHIR (pronounced like “fire”) will allow access to the coveted Electronic Health Record (EHR) via many new applications and devices.

An easy to read diagram
An easy to read diagram

Also very impressive and a bit more visible were the beautiful mobile workflow apps like Nextgen’s “Go for iPad.” What I like about this electronic health record and dictation recording tool is that it does not do everything. The heavy lifting of setting up records is done on the desktop (templating in healthcare parlance), and on-the-go actions such as dictation and prescription refills, can be executed in short order on the iPad.

NextGen Go
NextGen Go

I also learned that Greenway, a software provider of Practice Management (PM) and EHR tools, has an app marketplace (think iTunes). Topping their offering is Phreesia, a check-in app for iPad can replace all that form filling in the doctor’s office with a few taps of a touchscreen.

The Internet of Things (IoT) was also present, from Tyco’s tracking bracelets, for babies and elders, to decibel logging sensors that monitor noise levels. Quietyme, a HealthBox and Gener8tor accelerator graduate, establishes a mesh network of small volume monitors in each hospital room, the corridor, nurses station, etc. They perform some fancy data analytics (in partnership with Miosoft and Zero Locus). CEO John Bialk says that by comparing noise levels in patient rooms with patient surveys, they can document and predict which noisy areas are having a negative impact on healing. And from Ascom, voice over internet protocol (VoIP) portable devices are like little cordless phones that nurses can use on the local area network (LAN). Their Android device even supports internet instant messaging.

Mesh networking decibel monitor
Mesh networking decibel monitor

Thank you to all those who visited with Concrete Interactive, and those who described their wonderful products, software, services and innovation.

Chris Isham from Sidus BioData, Chris Andreski from Ascom, Suzy Fulton from Greenway, Bernard Echiverri from Corepoint, Piers Nash from University of Chicago, Ben Bush from Orchard Software, Mark Lynch from Tyco Security Products, Huey Zoroufy from Quietyme, Matt Ward from Imprivata, Stevie Bahu from Modis Health IT, Michael Hultner from Lockheed Martin, Sungsoo Kang from Samsung.

 

Amazon AWS at HIMSS 2015

Concrete Interactive is available for meetings at HIMSS 2015, the healthcare IT conference in Chicago this April 12-16.

And I know you’ll be almost as excited to learn that for the first time this year Amazon will be making a full-fledged appearance at HIMSS. What’s even more remarkable is that some of the leaders of the AWS HIPAA compliance team, such as Chris Crosbie HIPAA Solutions Architect, Jessie Beegle their Business Development Manager for the Healthcare Industry, and Kenzie Kepper member of the AWS Healthcare Marketing Team will be present and accepting meetings.

You can request a meeting if interested in learning more about hosting HIPAA applications on AWS. Here’s the signup link: http://www.aws.amazon.com/events/aws-himss-events.

In my experience with the Amazon Popup Loft in San Francisco, the AWS team is very giving of their time and expertise. These aren’t your typical Apple “Genius” types who fall into a prescribed script about fixing your iPhone. The solution architects and technical team members who are available at the Popup Loft are the actual people with inside technical knowledge of the AWS service, and they have been happy to dive into our application details.

So, how does one implement a HIPAA compliant software application on Amazon Web Service? Back when Concrete Interactive built our first HIPAA app in 2012, assigning responsibility across the network infrastructure was quite a challenge. Nowadays, Amazon has drawn a bright line at the hypervisor, the piece of network virtualization software that manages the particular application’s server. Their shared responsibility model ensures from the hypervisor outward, throughout the rest of the AWS network, it is Amazon’s responsibility to secure PHI.

AWS shares responsibility for PHI with Concrete Interactive
AWS shares responsibility for PHI with BAA signatories like Concrete Interactive

 

AWS specifically supports HIPAA compliant infrastructure through six of their services today: Amazon EC2, Amazon EBS, Amazon S3, Amazon Redshift, Amazon Glacier, and Amazon Elastic Load Balancer.

Specifically on EC2, you must use a dedicated instance. This comes with a higher monthly fee, but it’s peanuts compared with building your own compliant datacenter.

According to Amazon’s HIPAA compliance video, over 600 companies have signed their Business Associates Agreement (including us!) This agreement allows our HIPAA compliant apps to be validated, and shows where PHI responsibility lies, depending on which side of the hypervisor line it is used, stored, or transferred.

If you are interested in meeting with Concrete Interactive at HIMSS 2015, please drop us a line. In partnership with Amazon AWS, and FDA Compliance Advisor David Nettleton, we hope to shed light on any of your HIPAA, healthcare, web or mobile app development questions.

Apple’s ResearchKit Puts Clinical Trials in Your Pocket

Building HIPAA compliant software has never been easy. Modern apps served from the cloud, and enabled for mobile devices presents even greater challenges. But imagine the potential for medical research, given the hundreds of millions of smartphones deployed globally, each equipped with dozens of sensors.

Last year when Apple introduced HealthKit for developers, the iPhone leapt suddenly into the ranks of integrated health tracker, along the lines of Fitbit and Jawbone activity trackers. But the iPhone has one major advantage over most other health tracking devices: built-in internet connectivity.

Whereas with Fitbit, Jawbone, Nike Plus, wifi-enabled scales, blood pressure monitors, and similar devices, users need to complete a multi-step setup process, but the iPhone is ready to send useful data about number of steps walked or run, flights climbed, and many other sensor events straight to the cloud.

The FitBit requires additional software installation.
The FitBit Ultra requires additional software installation.

 

By providing the iOS Health app for free as part of iOS 8, Apple has given consumers a powerful new toolkit for tracking health data. The only problem is, this data is unavailable to researchers. There has been no way for researchers, doctors, hospitals or health administrators to access health data collected via HealthKit, even if a patient were willing to give consent. Until now…

The iOS Health App
The iOS Health App

ResearchKit, officially launching next month, provides a simplified, streamlined user interface framework for health apps to perform HIPAA-compliant clinical trial consent. According to Apple’s ResearchKit website, “With a user’s consent, ResearchKit can seamlessly tap into the pool of useful data generated by HealthKit — like daily step counts, calorie use, and heart rates — making it accessible to medical researchers.”

Apple has partnered with some impressive names in medical research, listing these on its website: The American Heart Association, Army of Women, Avon Foundation for Women, BreastCancer.org, Dana-Farber Cancer Institute, Massachusetts General Hospital, Michael J Fox Foundation for Parkinson’s Research, Icahn School of Medicine at Mount Sinai, Penn Medicine, University of Oxford, University of Rochester Medical School, Sage Bionetworks, Stanford Medicine, Susan G Komen, UCLA Jonsson Comprehensive Cancer Center, Weill Cornell Medical College and Xuanwu Hospital Capital Medical University.

So what can ResearchKit do for the researcher? The ResearchKit developer framework is divided into three primary modules: Surveys, Informed Consent, and Active Tasks. A touch-based signature panel allows an app user to perform informed consent right on their mobile device. The survey module provides a builder tool to specify types of questions and answers akin to SurveyMonkey, Google Forms or Wufoo, etc. The Active Tasks module is where active data collection begins.


ResearchKit Signature Panel and Activity Completion

With an active task, ResearchKit allows the user to complete a physical task while the iPhone’s sensors perform active data collection. This data can then be securely transmitted to the cloud for inclusion in the study. For example, Stanford’s MyHeart Counts app has already had tens of thousands of enrollees in just the short time since its launch in March, a feat unequaled by any clinical trial.

This is just the beginning. Data collection will not be limited to the sensors native to the iPhone. External devices, communicating over bluetooth for example, can provide more data such as heart rate, temperature, and weight.

According to VentureBeat, “Google also announced last year that it is developing a contact lens that can measure glucose levels in a person’s tears and transmit these data via an antenna thinner than a human hair.” The New York Times also reports this device is being developed by Google in partnership with Novartis.

Glucose Monitoring Smart Contact Lens
Glucose Monitoring Smart Contact Lens